login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291658
a(n) is the sum of all integers from 5^n to 5^(n+1)-1.
1
10, 290, 7450, 187250, 4686250, 117181250, 2929656250, 73242031250, 1831053906250, 45776363281250, 1144409160156250, 28610229394531250, 715255736816406250, 17881393430175781250, 447034835803222656250, 11175870895324707031250, 279396772384338378906250
OFFSET
0,1
COMMENTS
a(n) is the sum of all (positive) numbers having exactly (n+1) digits when written in base 5. - Alois P. Heinz, Sep 25 2017
FORMULA
a(n) = ((5^n)/2)*(5^(n+2) - 5^n - 4), n >= 0.
From Colin Barker, Sep 12 2017: (Start)
G.f.: 10*(1 - x) / ((1 - 5*x)*(1 - 25*x)).
a(n) = 30*a(n-1) - 125*a(n-2) for n>1.
(End)
a(n) = A162729(n+1) - A162729(n). - Alois P. Heinz, Sep 25 2017
EXAMPLE
For n=0, the sum is from 1 to 4, so a(0)=10;
for n=1, the sum is from 5 to 24, so a(1)=290, etc.
MAPLE
a:= unapply(sum(i, i=5^n..5^(n+1)-1), n):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 25 2017
PROG
(PARI) Vec(10*(1 - x) / ((1 - 5*x)*(1 - 25*x)) + O(x^30)) \\ Colin Barker, Sep 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Aug 28 2017
STATUS
approved