login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291654
Number of distinct values in the prime tree starting with n.
2
35, 35, 34, 22, 12, 11, 5, 7, 10, 5, 10, 10, 6, 6, 7, 7, 4, 3, 5, 13, 14, 6, 1, 5, 5, 3, 4, 3, 2, 2, 4, 3, 2, 2, 3, 3, 1, 4, 6, 3, 3, 3, 1, 3, 7, 6, 2, 2, 2, 6, 6, 1, 6, 9, 5, 5, 5, 2, 4, 5, 2, 2, 2, 7, 8, 7, 6, 2, 3, 4, 5, 3, 1, 1, 4, 5, 4, 4
OFFSET
1,1
COMMENTS
Starting from n construct a tree that includes nodes for each prime in n^2 + n + 1, n^2 + n - 1, n^2 - n + 1, n^2 - n - 1, and recurse on each node until no further primes can be included.
LINKS
Ralf Steiner, Prime-trees, NMBRTHRY posting, 13 Aug 2017.
EXAMPLE
a(5) = 12 since the tree for 5 looks like this where, for example, the symbol -[+-]-> stands for p^2+p-1 and the symbol -| stands for a leaf:
5-[--]->19-[+-]->379-[--]->143261-|
-[-+]->143263-[-+]->20524143907-|
-[+-]->29-[--]->811-|
-[++]->31-[--]->929-|
-[+-]->991-[-+]->981091-|
MAPLE
f:= proc(n) local R, agenda;
agenda:= {n}; R:= {n};
while nops(agenda) > 0 do
agenda:= select(isprime, map(t -> (t^2+t+1, t^2+t-1, t^2-t+1, t^2-t-1), agenda) minus R) ;
R:= R union agenda;
od;
nops(R);
end proc:
map(f, [$1..100]); # Robert Israel, Aug 29 2017
MATHEMATICA
f[n_] := Module[{R = {n}, agenda = {n}}, While[Length[agenda] > 0, agenda = Select[Flatten[Map[Function[t, {t^2 + t + 1, t^2 + t - 1, t^2 - t + 1, t^2 - t - 1}], agenda]] ~Complement~ R, PrimeQ]; R = Union[R, agenda]]; Length[R]];
Array[f, 100] (* Jean-François Alcover, Jul 30 2020, after Robert Israel *)
CROSSREFS
Sequence in context: A022991 A023477 A307509 * A257948 A142728 A316111
KEYWORD
nonn
AUTHOR
Ralf Steiner and Sean A. Irvine, Aug 28 2017
STATUS
approved