login
A291629
Numbers k such that 4 is the smallest decimal digit of k^2.
7
2, 7, 8, 22, 28, 67, 74, 88, 92, 93, 212, 214, 216, 234, 238, 242, 258, 262, 293, 308, 667, 676, 678, 683, 684, 692, 707, 738, 758, 772, 817, 822, 828, 863, 864, 866, 886, 888, 892, 893, 926, 938, 972, 974, 978, 2113, 2114, 2116, 2133, 2137, 2158, 2163, 2167
OFFSET
1,1
COMMENTS
First digit can't be 1, 4 or 5; last digit can't be 0, 1 or 9. - Robert Israel, Mar 25 2020
LINKS
EXAMPLE
28 is in the sequence because 28^2 = 784, the smallest decimal digit of which is 4.
MAPLE
filter:= n -> min(convert(n^2, base, 10))=4:
select(filter, [$1..10000]); # Robert Israel, Mar 25 2020
MATHEMATICA
Select[Range[2500], Min[IntegerDigits[#^2]]==4&] (* Harvey P. Dale, Aug 03 2019 *)
PROG
(PARI) select(k->vecmin(digits(k^2))==4, vector(3000, k, k))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Colin Barker, Aug 28 2017
STATUS
approved