login
A291565
Primitive balanced numbers: primitive numbers not of the form m*n where m, n > 1 are both primitive.
4
1, 2, 3, 12, 14, 15, 35, 56, 78, 140, 190, 248, 264, 270, 357, 418, 594, 616, 630, 812, 910, 1045, 1240, 1485, 1672, 2214, 2376, 2580, 3080, 3339, 3596, 3828, 3956, 4064, 4180, 4522, 4674, 5049, 5278, 5396, 5544, 5940, 6426, 7110, 7668, 8008, 8636, 8932, 10659, 11160, 11880, 12441, 12648, 15642
OFFSET
1,2
COMMENTS
A positive integer, n, is a balanced number (A020492) if sigma(n) is a multiple of phi(n). Since phi and sigma are multiplicative, if m and n are balanced numbers and gcd(m,n)=1, m*n is also a balanced number. This sequence eliminates these imprimitive terms.
LINKS
EXAMPLE
2 and 3 are balanced numbers, gcd(2,3)=1, so 6 is a non-primitive balanced number; 2 and 3 are primitive balanced numbers.
MATHEMATICA
balQ[n_] := Divisible[DivisorSigma[1, n], EulerPhi[n]]; primQ[n_] := balQ[n] && Module[{d = Divisors[n], ans = True}, Do[If[GCD[d[[k]], n/d[[k]]]==1 && balQ[ d[[k]]] && balQ[n/d[[k]]], ans=False; Break[]], {k, 2, Floor[Length[d]/2]}]; ans]; Select[Range[16000], primQ] (* Amiram Eldar, Jun 26 2019 *)
CROSSREFS
Sequence in context: A102150 A039588 A024579 * A299545 A068603 A045878
KEYWORD
nonn
AUTHOR
Jud McCranie, Aug 26 2017
STATUS
approved