OFFSET
0,6
LINKS
Seiichi Manyama, Antidiagonals n = 0..59, flattened
FORMULA
A(0, k) = 0, A(1, k) = 1, A(n+1, k) = (n^k+(n+1)^k)*A(n, k) - n^(2*k)*A(n-1, k).
EXAMPLE
Square array begins:
0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, ...
3, 11, 49, 251, 1393, ...
4, 50, 820, 16280, 357904, ...
MAPLE
A:= (n, k)-> n!^k * add(1/i^k, i=1..n):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 26 2017
MATHEMATICA
A[0, _] = 0; A[1, _] = 1; A[n_, k_] := A[n, k] = ((n-1)^k + n^k) A[n-1, k] - (n-1)^(2k) A[n-2, k];
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 11 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Aug 26 2017
STATUS
approved