login
A291335
a(n) = [x^n] 1/(1 + n*x/(1 + n*x^2/(1 + n*x^3/(1 + n*x^4/(1 + n*x^5/(1 - ...)))))), a continued fraction.
2
1, -1, 4, -18, 128, -1375, 19224, -328937, 6594560, -150804585, 3866510000, -109763181693, 3416538258432, -115680589167780, 4232540747232224, -166402907912306250, 6995675389431382016, -313160900844718102493, 14871520058618111804352, -746718033885917073001959
OFFSET
0,3
LINKS
FORMULA
a(n) = A286932(n,n).
a(n) ~ (-1)^n * exp(-1) * n^n. - Vaclav Kotesovec, Aug 26 2017
MATHEMATICA
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[n x^i, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 19}]
CROSSREFS
Main diagonal of A286932.
Sequence in context: A108704 A001423 A308351 * A158341 A144272 A034517
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 22 2017
STATUS
approved