login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291110
Number of endofunctions on [n] such that the LCM of their cycle lengths equals four.
2
0, 0, 0, 0, 6, 150, 3240, 71610, 1692180, 43296120, 1202014800, 36144686160, 1173334341960, 40964232699390, 1532291272031520, 61185138170697450, 2599160146594218480, 117091760635760465520, 5577733223175044859840, 280195572152151651031200
OFFSET
0,5
LINKS
FORMULA
a(n) ~ (3*exp(7/4) - 2*exp(3/2)) * n^(n-1). - Vaclav Kotesovec, Aug 18 2017
MAPLE
b:= proc(n, m) option remember; (k-> `if`(m>k, 0,
`if`(n=0, `if`(m=k, 1, 0), add(b(n-j, ilcm(m, j))
*binomial(n-1, j-1)*(j-1)!, j=1..n))))(4)
end:
a:= n-> add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..22);
MATHEMATICA
b[n_, m_] := b[n, m] = With[{k = 4}, If[m > k, 0, If[n == 0, If[m == k, 1, 0], Sum[b[n - j, LCM[m, j]] Binomial[n-1, j - 1] (j-1)!, {j, 1, n}]]]];
a[n_] := If[n == 0, 0, Sum[b[j, 1] n^(n-j) Binomial[n-1, j-1], {j, 0, n}]];
a /@ Range[0, 22] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A222029.
Sequence in context: A056418 A346694 A070025 * A246214 A065946 A222051
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 17 2017
STATUS
approved