login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290847
Number of dominating sets in the n-triangular graph.
4
1, 7, 57, 973, 32057, 2079427, 267620753, 68649126489, 35172776136145, 36025104013571583, 73784683970720501897, 302228664636911612364581, 2475873390079769597467385417, 40564787539999607393632514635067, 1329227699017403425105119604848703905
OFFSET
2,2
COMMENTS
A dominating set on the triangular graph corresponds with an edge cover on the complete graph with optionally one vertex removed.
LINKS
Eric Weisstein's World of Mathematics, Dominating Set
Eric Weisstein's World of Mathematics, Johnson Graph
Eric Weisstein's World of Mathematics, Triangular Graph
FORMULA
a(n) = A006129(n) + n * A006129(n-1).
a(n) = 2^binomial(n,2) - Sum_{k=2..n} binomial(n,k)*A006129(n-k).
MATHEMATICA
b[n_]:=Sum[(-1)^(n - k)*Binomial[n, k]*2^Binomial[k, 2], {k, 0, n}]; a[n_]:=b[n] + n*b[n - 1]; Table[a[n], {n, 2, 20}] (* Indranil Ghosh, Aug 12 2017 *)
PROG
(PARI) \\ here b(n) is A006129
b(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2));
a(n) = b(n) + n*b(n-1);
(Python)
from sympy import binomial
def b(n): return sum((-1)**(n - k)*binomial(n, k)*2**binomial(k, 2) for k in range(n + 1))
def a(n): return b(n) + n*b(n - 1)
print([a(n) for n in range(2, 21)]) # Indranil Ghosh, Aug 13 2017
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Aug 12 2017
STATUS
approved