login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290843
Numbers k such that the sum of digits of k^3 is 4^3 = 64.
4
1192, 1366, 1426, 1435, 1753, 1786, 1813, 1816, 1912, 1942, 1999, 2116, 2389, 2395, 2398, 2413, 2566, 2599, 2632, 2635, 2653, 2692, 2713, 2872, 2899, 2992, 3022, 3031, 3103, 3199, 3289, 3295, 3298, 3301, 3355, 3361, 3382, 3394, 3409, 3415, 3442, 3466, 3475
OFFSET
1,1
LINKS
EXAMPLE
1192^3 = 1693669888, 1 + 6 + 9 + 3 + 6 + 6 + 9 + 8 + 8 + 8 = 64 = 4^3.
11*(10^(n+2) + 1) is a term for all n > 0. - Altug Alkan, Aug 12 2017
MATHEMATICA
Select[Range[3500], Total[IntegerDigits[#^3]]==64&] (* Harvey P. Dale, Aug 04 2019 *)
PROG
(PARI) isok(n) = sumdigits(n^3) == 64; \\ Altug Alkan, Aug 12 2017
CROSSREFS
Numbers k such that sum of digits of k^3 is m^3: A107679 (m=2), A290842 (m=3), this sequence (m=4), A159462 (m=5), A159463 (m=6).
Cf. A067075.
Sequence in context: A252643 A158735 A035860 * A298239 A299365 A299134
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 12 2017
STATUS
approved