login
A290723
a(n) = (1/11520) * n*(n+7)^2 * (3*n^7 + 83*n^6 + 961*n^5 + 6201*n^4 + 24708*n^3 + 60700*n^2 + 87968*n + 85056).
2
0, 1476, 11772, 61595, 249986, 846306, 2495961, 6601035, 15978570, 35938992, 75976077, 152318826, 291665618, 536502980, 952506198, 1638627738, 2740602996, 4468742196, 7121033250, 11112754029, 17013984714, 25596622646, 37892734319, 55266332805, 79500944910
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: x*(1476 - 4464*x + 13283*x^2 - 23639*x^3 + 28885*x^4 - 24502*x^5 + 14202*x^6 - 5376*x^7 + 1200*x^8 - 120*x^9) / (1 - x)^11. - Colin Barker, Aug 09 2017
MATHEMATICA
CoefficientList[Series[x (1476 - 4464 x + 13283 x^2 - 23639 x^3 + 28885 x^4 - 24502 x^5 + 14202 x^6 - 5376 x^7 + 1200 x^8 - 120 x^9)/(1 - x)^11, {x, 0, 24}], x] (* Michael De Vlieger, Aug 09 2017 *)
PROG
(PARI) concat(0, Vec(x*(1476 - 4464*x + 13283*x^2 - 23639*x^3 + 28885*x^4 - 24502*x^5 + 14202*x^6 - 5376*x^7 + 1200*x^8 - 120*x^9) / (1 - x)^11 + O(x^30))) \\ Colin Barker, Aug 09 2017
CROSSREFS
This is the negation of column 6 of triangle A290053.
Sequence in context: A187310 A167575 A157505 * A187531 A251218 A188363
KEYWORD
nonn,easy
AUTHOR
STATUS
approved