login
A290696
Triangle read by rows, T(n, k) = [x^k](Sum_{k=0..n}(-1)^(n-k)*Stirling2(n, k)*k!* x^k)^2, for 0 <= k <= 2n.
0
1, 0, 0, 1, 0, 0, 1, -4, 4, 0, 0, 1, -12, 48, -72, 36, 0, 0, 1, -28, 268, -1056, 1968, -1728, 576, 0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400, 0, 0, 1, -124, 4924, -70080, 488640, -1909440, 4466880, -6393600, 5486400, -2592000, 518400
OFFSET
0,8
COMMENTS
Without squaring the sum in the definition one gets for the polynomials:
Integral_{x=0..1} P(n, x) = Bernoulli(n, 1) = A164555(n)/A027642(n).
FORMULA
Integral_{x=0..1} P(n, x) = BernoulliMedian(n) = A212196(n)/A181131(n).
EXAMPLE
Triangle starts:
[1]
[0, 0, 1]
[0, 0, 1, -4, 4]
[0, 0, 1, -12, 48, -72, 36]
[0, 0, 1, -28, 268, -1056, 1968, -1728, 576]
[0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400]
The first few polynomials:
P_0(x) = 1
P_1(x) = x^2
P_2(x) = x^2 - 4*x^3 + 4*x^4
P_3(x) = x^2 - 12*x^3 + 48*x^4 - 72*x^5 + 36*x^6
P_4(x) = x^2 - 28*x^3 + 268*x^4 - 1056*x^5 + 1968*x^6 - 1728*x^7 + 576*x^8
MAPLE
P := (n, x) -> add((-1)^(n-k)*Stirling2(n, k)*k!*x^k, k=0..n)^2;
for n from 0 to 6 do seq(coeff(P(n, x), x, k), k=0..2*n) od;
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Peter Luschny, Aug 25 2017
STATUS
approved