login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290649
The largest number z less than or equal to 3n+1 such that binomial(z,n) is odd.
0
1, 3, 7, 7, 13, 15, 15, 15, 25, 27, 31, 31, 31, 31, 31, 31, 49, 51, 55, 55, 61, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 97, 99, 103, 103, 109, 111, 111, 111, 121, 123, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127
OFFSET
0,2
COMMENTS
This sequence is related to and derived from a problem in algebraic topology which asks you to find the largest a+b such that (x+z)^a * (y+z)^b is nonzero mod 2 when x^{n+1}=y^{n+1}=z^{n+1}=0. See the paper at the url below for more information.
FORMULA
If n=2^e + d with 0<= d < 2^e, then a(n)=min(3* 2^e + a(d), 2^{e+2}-1). I can prove this, and also the following explicit formula. If n=A+B, where A==0 mod 2^{e+2}, and 2^e + 2^{e-1} <= B < 2^{e+1}, then a(n)=3A + 2^{e+2}-1. (This is saying that the highest adjacent 1's in the binary expansion of n are in positions e and e-1. If there are none, then a(n)=3n+1 if n is even, and 3n if n is odd.)
PROG
(PARI) a(n) = my(z=3*n+1); while(z > 0, if(Mod(binomial(z, n), 2)==1, return(z)); z--); 0 \\ Felix Fröhlich, Aug 08 2017
CROSSREFS
Sequence in context: A137315 A139795 A064829 * A118259 A060845 A059478
KEYWORD
nonn,easy
AUTHOR
Donald M Davis, Aug 08 2017
STATUS
approved