login
A290378
Number of minimal dominating sets in the n-gear graph.
4
2, 8, 8, 16, 37, 80, 156, 304, 602, 1173, 2290, 4456, 8686, 16892, 32833, 63776, 123864, 240524, 467060, 907061, 1761894, 3423164, 6652706, 12933280, 25151787, 48931280, 95228360, 185400336, 361093444, 703546005, 1371282460, 2673742784, 5215147858
OFFSET
1,1
COMMENTS
Sequence extrapolated to n = 1 using recurrence. - Andrew Howroyd, Aug 27 2017
LINKS
Eric Weisstein's World of Mathematics, Gear Graph
Eric Weisstein's World of Mathematics, Minimal Dominating Set
Index entries for linear recurrences with constant coefficients, signature (4, -3, -4, 4, -1, 1, 3, -3, 0, 2, 3, 0, -1).
FORMULA
From Andrew Howroyd, Aug 27 2017: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) - 4*a(n-3) + 4*a(n-4) - a(n-5) + a(n-6) + 3*a(n-7) - 3*a(n-8) + 2*a(n-10) + 3*a(n-11) - a(n-13) for n > 13.
G.f.: x*(2 - 18*x^2 + 16*x^3 + 21*x^4 - 18*x^5 - 15*x^6 - 2*x^7 + 16*x^8 + 2*x^9 + 11*x^10 - 2*x^11 - 5*x^12)/((1 + x^2)*(1 - x - x^2)*(1 - x - x^2 - x^3)*(1 - 2*x - x^2 + 3*x^3 - x^4 - 2*x^5 + x^6)).
(End)
MATHEMATICA
Table[RootSum[-1 - # - #^2 + #^3 &, #^n &] + RootSum[1 - 2 # - #^2 + 3 #^3 - #^4 - 2 #^5 + #^6 &, #^n &] - LucasL[n] - 2 Cos[n Pi/2], {n, 20}]
LinearRecurrence[{4, -3, -4, 4, -1, 1, 3, -3, 0, 2, 3, 0, -1}, {2, 8, 8, 16, 37, 80, 156, 304, 602, 1173, 2290, 4456, 8686}, 20]
CoefficientList[Series[(2 - 18 x^2 + 16 x^3 + 21 x^4 - 18 x^5 - 15 x^6 - 2 x^7 + 16 x^8 + 2 x^9 + 11 x^10 - 2 x^11 - 5 x^12)/((1 + x^2) (1 - x - x^2) (1 - x - x^2 - x^3) (1 - 2 x - x^2 + 3 x^3 - x^4 - 2 x^5 + x^6)), {x, 0, 20}], x]
PROG
(PARI) Vec((2 - 18*x^2 + 16*x^3 + 21*x^4 - 18*x^5 - 15*x^6 - 2*x^7 + 16*x^8 + 2*x^9 + 11*x^10 - 2*x^11 - 5*x^12)/((1 + x^2)*(1 - x - x^2)*(1 - x - x^2 - x^3)*(1 - 2*x - x^2 + 3*x^3 - x^4 - 2*x^5 + x^6)) + O(x^30)) \\ Andrew Howroyd, Aug 27 2017
CROSSREFS
Sequence in context: A168286 A079458 A281914 * A104537 A128018 A138230
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jul 28 2017
EXTENSIONS
a(13)-a(24) from Andrew Howroyd, Aug 11 2017
a(1)-a(2) and terms a(25) and beyond from Andrew Howroyd, Aug 27 2017
STATUS
approved