login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in expansion of -q*E'_4/E_4 where E_4 is the Eisenstein Series (A004009).
8

%I #30 Mar 01 2018 02:43:46

%S -240,53280,-12288960,2835808320,-654403831200,151013228757120,

%T -34848505552897920,8041801037378486400,-1855762905734676483120,

%U 428244362959801779806400,-98823634118413525094402880,22804995243537595828606337280

%N Coefficients in expansion of -q*E'_4/E_4 where E_4 is the Eisenstein Series (A004009).

%H Seiichi Manyama, <a href="/A289636/b289636.txt">Table of n, a(n) for n = 1..422</a>

%F a(n) = Sum_{d|n} d * A110163(d) = A289633(n)/6.

%F a(n) = A288261(n)/3 + 8*A000203(n).

%F a(n) = -Sum_{k=1..n-1} A004009(k)*a(n-k) - A004009(n)*n.

%F G.f.: 1/3 * E_6/E_4 - 1/3 * E_2.

%F a(n) ~ (-1)^n * exp(Pi*sqrt(3)*n). - _Vaclav Kotesovec_, Jul 09 2017

%e a(1) = 1 * A110163(1) = -240,

%e a(2) = 1 * A110163(1) + 2 * A110163(2) = 53280,

%e a(3) = 1 * A110163(1) + 3 * A110163(3) = -12288960.

%t nmax = 20; Rest[CoefficientList[Series[-240*x*Sum[k*DivisorSigma[3, k]*x^(k-1), {k, 1, nmax}]/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Jul 09 2017 *)

%t terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[-D[Ei[4], x]/Ei[4] + O[x]^terms, x] (* _Jean-François Alcover_, Mar 01 2018 *)

%Y -q*E'_k/E_k: A289635 (k=2), this sequence (k=4), A289637 (k=6), A289638 (k=8), A289639 (k=10), A289640 (k=14).

%Y Cf. A001943, A004009 (E_4), A006352 (E_2), A110163, A145094, A289633.

%K sign

%O 1,1

%A _Seiichi Manyama_, Jul 09 2017