Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jul 14 2017 10:17:36
%S 1,1,7,1341,5828185,517500496981,877820839402932499,
%T 27202373147496127842409429,14934414860406931133627906259665137,
%U 142143740345412121643458345045577780672138977,23087568034858117342849941754170955046637454778184629205
%N Number of Dyck paths of semilength n^2 and height n.
%H Alois P. Heinz, <a href="/A289482/b289482.txt">Table of n, a(n) for n = 0..40</a>
%F a(n) = A289481(n,n).
%F a(n) ~ c * 2^(2*n^2) / n^4, where c = 0.034180619793706218467525729844898502557235639065782754227258170112282483988... - _Vaclav Kotesovec_, Jul 14 2017
%p b:= proc(x, y, k) option remember;
%p `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+
%p `if`(y < min(x-1, k), b(x-1, y+1, k), 0))
%p end:
%p a:= n-> `if`(n=0, 1, b(2*n^2, 0, n)-b(2*n^2, 0, n-1)):
%p seq(a(n), n=0..12);
%t b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y<Min[x - 1, k], b[x - 1, y + 1, k], 0]]; a[n_]:=a[n]=If[n==0, 1, b[2n^2, 0, n] - b[2n^2, 0, n - 1]]; Table[a[n], {n, 0, 12}] (* _Indranil Ghosh_, Jul 08 2017 *)
%Y Main diagonal of A289481.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Jul 06 2017