login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289480
Number of Dyck paths of semilength 10*n and height n.
2
1, 1, 524287, 956185155129, 2011805242484811913, 3913893675608035491579363, 6753921048102794214403632812402, 10404372657815158859307324171401493273, 14572291057533118353907127088834174993619633, 18906515358804836479733610566557899759396278209535
OFFSET
0,3
COMMENTS
In general, column k>1 of A289481 is asymptotic to 2^(2*k*n + 3) * k^(2*k*n + 1/2) / ((k-1)^((k-1)*n + 1/2) * (k+1)^((k+1)*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017
LINKS
FORMULA
a(n) ~ 2^(40*n + 7/2) * 5^(20*n + 1/2) / (3^(18*n + 1) * 11^(11*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017
MAPLE
b:= proc(x, y, k) option remember;
`if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+
`if`(y < min(x-1, k), b(x-1, y+1, k), 0))
end:
a:= n-> `if`(n=0, 1, b(20*n, 0, n)-b(20*n, 0, n-1)):
seq(a(n), n=0..20);
MATHEMATICA
b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y<Min[x - 1, k], b[x - 1, y + 1, k], 0]]; a[n_]:=a[n]=If[n==0, 1, b[20n, 0, n] - b[20n, 0, n - 1]]; Table[a[n], {n, 0, 20}] (* Indranil Ghosh, Jul 08 2017 *)
CROSSREFS
Column k=10 of A289481.
Sequence in context: A011569 A022535 A069394 * A222530 A069280 A017702
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 06 2017
STATUS
approved