OFFSET
0,2
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(3*A288851(n)/4).
a(n) ~ c * exp(2*Pi*n) / n^(7/4), where c = -3^(5/2) * Gamma(1/4)^11 / (2048 * 2^(3/4) * Pi^9) = -0.21604472104032272720247495618663130188448925463945370445... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^(3/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 03 2017
STATUS
approved