login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289214
a(n) = n! * Laguerre(n,-8).
5
1, 9, 98, 1238, 17688, 280888, 4894672, 92676144, 1891712384, 41361536384, 963532779264, 23806296960256, 621407739476992, 17078348640463872, 492724294444623872, 14883442560920164352, 469591293625846038528, 15443081743064125505536, 528340631093887891603456
OFFSET
0,2
FORMULA
E.g.f.: exp(8*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 8^i/i! * binomial(n,i).
a(n) = n! * A160603(n)/A160604(n).
a(n) ~ exp(-4 + 4*sqrt(2*n) - n) * n^(n + 1/4) / 2^(5/4) * (1 + 451/(96*sqrt(2*n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 8^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020
MAPLE
a:= n-> n! * add(binomial(n, i)*8^i/i!, i=0..n):
seq(a(n), n=0..20);
MATHEMATICA
Table[n!*LaguerreL[n, -8], {n, 0, 20}] (* Indranil Ghosh, Jul 04 2017 *)
PROG
(Python)
from mpmath import *
mp.dps=100
def a(n): return int(fac(n)*laguerre(n, 0, -8))
print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
(PARI) my(x = 'x + O('x^30)); Vec(serlaplace(exp(8*x/(1-x))/(1-x))) \\ Michel Marcus, Jul 04 2017
(PARI) a(n) = n!*pollaguerre(n, 0, -8); \\ Michel Marcus, Feb 05 2021
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(8*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 11 2018
CROSSREFS
Column k=8 of A289192.
Sequence in context: A220490 A024115 A066557 * A121706 A306567 A061817
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 28 2017
STATUS
approved