login
A288309
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3), where a(0) = 2, a(1) = 4, a(2) = 8.
2
2, 4, 8, 18, 40, 92, 210, 484, 1112, 2562, 5896, 13580, 31266, 72004, 165800, 381810, 879208, 2024636, 4662258, 10736164, 24722936, 56931426, 131100232, 301894508, 695195202, 1600878724, 3686464328, 8489100498, 19548493480, 45015794972, 103661275410
OFFSET
0,1
COMMENTS
Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iteration of the mapping 00->0010, 1->110, starting with 00; see A288306.
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3), where a(0) = 2, a(1) = 4, a(2) = 8.
G.f.: -((2*(-1 + 2*x^2))/(1 - 2*x - 2*x^2 + 3*x^3)).
a(n) = (2^(1-n)*(13*2^n + (13-4*sqrt(13))*(1-sqrt(13))^n + (1+sqrt(13))^n*(13+4*sqrt(13)))) / 39. - Colin Barker, Jun 09 2017
MATHEMATICA
LinearRecurrence[{2, 2, -3}, {2, 4, 8}, 40]
PROG
(PARI) Vec(2*(1 - 2*x^2) / ((1 - x)*(1 - x - 3*x^2)) + O(x^30)) \\ Colin Barker, Jun 09 2017
CROSSREFS
Cf. A288306.
Sequence in context: A052910 A367659 A000967 * A096813 A058387 A330052
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 09 2017
STATUS
approved