OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Eric Weisstein's MathWorld, Reciprocal Multifactorial Constant
FORMULA
m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} (gamma(j/k) - gamma(j/k, 1/k)) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.
EXAMPLE
3.88695965374084349542856991093670567270530958752016048580439533869...
MATHEMATICA
m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[7], 10, 104][[1]]
RealDigits[Total[Table[1/Times@@Range[n, 1, -7], {n, 0, 500}]], 10, 120][[1]] (* Harvey P. Dale, May 21 2023 *)
PROG
(PARI) default(realprecision, 105); (1/7)*exp(1/7)*(7 + sum(k=1, 6, 7^(k/7)*(gamma(k/7) - incgam(k/7, 1/7)))) \\ G. C. Greubel, Mar 28 2019
(Magma) SetDefaultRealField(RealField(105)); (1/7)*Exp(1/7)*(7 + (&+[7^(k/7)*Gamma(k/7, 1/7): k in [1..6]])); // G. C. Greubel, Mar 28 2019
(Sage) numerical_approx((1/7)*exp(1/7)*(7 + sum(7^(k/7)*(gamma(k/7) - gamma_inc(k/7, 1/7)) for k in (1..6))), digits=105) # G. C. Greubel, Mar 28 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Jun 05 2017
STATUS
approved