login
A287845
Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly two peaks.
6
1, 0, 1, 0, 0, 3, 6, 0, 9, 54, 138, 207, 360, 1368, 4545, 11304, 25182, 61605, 173916, 498798, 1347417, 3497328, 9147060, 24630669, 67414590, 184065966, 498495303, 1345622436, 3642036804, 9900361107, 26982011250, 73570082760, 200540053395, 546660151722
OFFSET
0,6
LINKS
Manosij Ghosh Dastidar and Michael Wallner, Bijections and congruences involving lattice paths and integer compositions, arXiv:2402.17849 [math.CO], 2024. See p. 15.
EXAMPLE
. a(2) = 1: /\/\ .
.
. a(5) = 3:
.
. /\/\ /\/\ /\/\
. /\/\/ \ /\/ \/\ / \/\/\ .
MAPLE
b:= proc(n, j) option remember;
`if`(n=j or n=0, 1, add(b(n-j, i)*i*(i-1)/2
*binomial(j-1, i-3), i=3..min(j+2, n-j)))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*i*(i - 1)/2* Binomial[j - 1, i - 3], {i, 3, Min[j + 2, n - j]}]];
a[n_] := b[n, 2];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
CROSSREFS
Column k=2 of A288318.
Sequence in context: A271854 A077086 A010618 * A070297 A284896 A299032
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 01 2017
STATUS
approved