login
A287836
Number of words over the alphabet {0,1,...,10} such that no two consecutive terms have distance 5.
0
1, 11, 109, 1081, 10721, 106329, 1054553, 10458881, 103729441, 1028771337, 10203182953, 101193470929, 1003620008177, 9953736259545, 98719500126905, 979083577381409, 9710388021269185, 96306012787788969, 955147011506293513, 9472989143467878769, 93951530216004879761
OFFSET
0,2
FORMULA
For n>3, a(n) = 10*a(n-1) + a(n-2) - 18*a(n-3), a(0)=1, a(1)=11, a(2)=109, a(3)=1081.
G.f.: (1 + x - 2*x^2 - 2*x^3)/(1 - 10*x - x^2 + 18*x^3).
MATHEMATICA
LinearRecurrence[{10, 1, -18}, {1, 11, 109, 1081}, 20]
PROG
(Python)
def a(n):
.if n in [0, 1, 2, 3]:
..return [1, 11, 109, 1081][n]
.return 10*a(n-1) + a(n-2) - 18*a(n-3)
KEYWORD
nonn,easy
AUTHOR
David Nacin, Jun 07 2017
STATUS
approved