login
A287309
Primes that can be generated by the concatenation in base 7, in descending order, of two consecutive integers read in base 10.
0
7, 23, 31, 47, 449, 499, 599, 1049, 1249, 1399, 1499, 1549, 1699, 1949, 1999, 2099, 2399, 18919, 20639, 20983, 24767, 25111, 25799, 29927, 30271, 31991, 33023, 38183, 40591, 45751, 46439, 48847, 51599, 52631, 57791, 59167, 60887, 61231, 64327, 66047, 67079, 68111
OFFSET
1,1
EXAMPLE
2 and 3 in base 7 are 2 and 3 and concat(3,2) = 32 in base 10 is 23;
8 and 9 in base 7 are 11 and 12 and concat(12,11) = 1211 in base 10 is 449.
MAPLE
with(numtheory): P:= proc(q, h) local a, b, c, d, k, n; if q=0 then 7 else a:=convert(q+1, base, h); b:=convert(q, base, h); c:=[op(a), op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; fi; end: seq(P(i, 7), i=0..1000);
MATHEMATICA
With[{b = 7}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Reverse /@ Partition[Range[0, 200], 2, 1]], PrimeQ]] (* Michael De Vlieger, May 23 2017 *)
CROSSREFS
Sequence in context: A007522 A141175 A295196 * A275777 A329931 A157811
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, May 23 2017
STATUS
approved