login
A287275
Number of set partitions of [n] such that for each block all absolute differences between consecutive elements are <= three.
4
1, 1, 2, 5, 15, 47, 150, 481, 1545, 4965, 15958, 51293, 164871, 529947, 1703418, 5475329, 17599457, 56570281, 181834970, 584475733, 1878691887, 6038716423, 19410365422, 62391120801, 200545011401, 644615789581, 2072001259342, 6660074556205, 21407609138375
OFFSET
0,3
LINKS
Pierpaolo Natalini, Paolo Emilio Ricci, New Bell-Sheffer Polynomial Sets, Axioms 2018, 7(4), 71.
FORMULA
G.f.: -(x^3-3*x+1)/((x-1)*(x^3-x^2-3*x+1)).
a(n) = A287214(n,3).
a(n) = A000110(n) for n <= 4.
EXAMPLE
a(5) = 47 = 52 - 5 = A000110(5) - 5 counts all set partitions of [5] except: 15|234, 15|23|4, 15|24|3, 15|2|34, 15|2|3|4.
CROSSREFS
Column k=3 of A287214.
Cf. A000110.
Sequence in context: A143094 A308274 A058495 * A151280 A149914 A071735
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, May 22 2017
STATUS
approved