login
A287005
Number of connected dominating sets on the n-Moebius ladder.
0
9, 13, 49, 129, 361, 989, 2689, 7233, 19273, 50925, 133585, 348225, 902825, 2329661, 5986593, 15327617, 39115913, 99532493, 252601201, 639548673, 1615746537, 4073951645, 10253517761, 25763633089, 64635943881, 161928486829, 405134009617, 1012371656385
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Connected Dominating Set
Eric Weisstein's World of Mathematics, Moebius Ladder
FORMULA
a(n) = (1 - 5*n)*LucasL(n, 2) + 2*(8*Fibonacci(n, 2) + 1)*n - 1.
a(n) = 6*a(n-1) - 11*a(n-2) + 4*a(n-3) + 5*a(n-4) - 2*a(n-5) - a(n-6).
G.f.: -x*(-9+41*x-70*x^2+58*x^3-29*x^4+x^5)/((-1+x)^2*(-1+2*x+x^2)^2).
MATHEMATICA
Table[(1 - 5 n) LucasL[n, 2] + 2 (8 Fibonacci[n, 2] + 1) n - 1, {n, 20}]
Table[-1 + (1 - Sqrt[2])^n + (1 + Sqrt[2])^n + (2 + (1 + Sqrt[2])^n (-5 + 4 Sqrt[2]) - (1 - Sqrt[2])^n (5 + 4 Sqrt[2])) n, {n, 20}] // Expand
CoefficientList[Series[-((-9 + 41 x - 70 x^2 + 58 x^3 - 29 x^4 + x^5)/((-1 + x)^2 (-1 + 2 x + x^2)^2)), {x, 0, 20}], x]
LinearRecurrence[{6, -11, 4, 5, -2, -1}, {9, 13, 49, 129, 361, 989}, 20]
CROSSREFS
Sequence in context: A146016 A146128 A146039 * A270234 A270718 A270459
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, May 17 2017
EXTENSIONS
a(13) from Eric W. Weisstein, Jun 30 2017
a(1), a(2) and a(14) and above from Eric W. Weisstein, Dec 02 2022
STATUS
approved