OFFSET
0,8
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
FORMULA
G.f. of column k: 1/(1 - k*x/(1 - k*x^2/(1 - k*x^3/(1 - k*x^4/(1 - k*x^5/(1 - ...)))))), a continued fraction.
G.f. of column k (for k > 0): (Sum_{j>=0} (-k)^j*x^(j*(j+1))/Product(i=1..j} (1 - x^i)) / (Sum_{j>=0} (-k)^j*x^(j^2)/Product(i=1..j} (1 - x^i)).
EXAMPLE
G.f. of column k: A(x) = 1 + k*x + k^2*x^2 + k^2*(k + 1)*x^3 + k^3*(k + 2)*x^4 + k^3*(k^2 + 3*k + 1)*x^5 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 4, 9, 16, 25, ...
0, 2, 12, 36, 80, 150, ...
0, 3, 32, 135, 384, 875, ...
0, 5, 88, 513, 1856, 5125, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x^i, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, May 16 2017
STATUS
approved