login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286933
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - k*x/(1 - k*x^2/(1 - k*x^3/(1 - k*x^4/(1 - k*x^5/(1 - ...)))))).
2
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 2, 0, 1, 4, 9, 12, 3, 0, 1, 5, 16, 36, 32, 5, 0, 1, 6, 25, 80, 135, 88, 9, 0, 1, 7, 36, 150, 384, 513, 248, 15, 0, 1, 8, 49, 252, 875, 1856, 1971, 688, 26, 0, 1, 9, 64, 392, 1728, 5125, 9024, 7533, 1920, 45, 0, 1, 10, 81, 576, 3087, 11880, 30125, 43776, 28836, 5360, 78, 0
OFFSET
0,8
LINKS
FORMULA
G.f. of column k: 1/(1 - k*x/(1 - k*x^2/(1 - k*x^3/(1 - k*x^4/(1 - k*x^5/(1 - ...)))))), a continued fraction.
G.f. of column k (for k > 0): (Sum_{j>=0} (-k)^j*x^(j*(j+1))/Product(i=1..j} (1 - x^i)) / (Sum_{j>=0} (-k)^j*x^(j^2)/Product(i=1..j} (1 - x^i)).
EXAMPLE
G.f. of column k: A(x) = 1 + k*x + k^2*x^2 + k^2*(k + 1)*x^3 + k^3*(k + 2)*x^4 + k^3*(k^2 + 3*k + 1)*x^5 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 4, 9, 16, 25, ...
0, 2, 12, 36, 80, 150, ...
0, 3, 32, 135, 384, 875, ...
0, 5, 88, 513, 1856, 5125, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x^i, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0-1 give: A000007, A005169.
Rows n=0-3 give: A000012, A001477, A000290, A011379.
Main diagonal gives A291274.
Cf. A286932.
Sequence in context: A171882 A214075 A322267 * A295860 A118345 A292804
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, May 16 2017
STATUS
approved