OFFSET
0,4
COMMENTS
a(n) is a squarefree integer for all n, a(n) is odd if n>=0 is even, and a(n) is even if n>=3 is odd. See "Power-sum denominators", Thm. 4, pp. 12-13, and "The denominators of power sums of arithmetic progressions", Thm. 3, pp. 3 and 11-12.
LINKS
Robert Israel, Table of n, a(n) for n = 0..5900
Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
MAPLE
seq(denom(bernoulli(n, x))/denom(bernoulli(n)), n=0..100); # Robert Israel, May 24 2017
MATHEMATICA
Table[ Denominator[ Together[ BernoulliB[n, x]]]/Denominator[ BernoulliB[n]], {n, 0, 63}]
PROG
(PARI) apply( a(n)=denominator(content(bernpol(n)))/denominator(bernfrac(n)), [1..50]) \\ M. F. Hasler, Dec 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernd C. Kellner and Jonathan Sondow, May 11 2017
STATUS
approved