login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286367
Compound filter: a(n) = P(A001511(n), A286364(n)), where P(n,k) is sequence A000027 used as a pairing function.
3
1, 3, 2, 6, 4, 5, 2, 10, 22, 8, 2, 9, 4, 5, 11, 15, 4, 30, 2, 13, 121, 5, 2, 14, 46, 8, 407, 9, 4, 17, 2, 21, 121, 8, 11, 39, 4, 5, 11, 19, 4, 138, 2, 9, 67, 5, 2, 20, 22, 57, 11, 13, 4, 437, 11, 14, 121, 8, 2, 24, 4, 5, 2212, 28, 211, 138, 2, 13, 121, 17, 2, 49, 4, 8, 92, 9, 121, 17, 2, 26, 7261, 8, 2, 156, 211, 5, 11, 14, 4, 80, 11, 9, 121, 5, 11, 27, 4, 30
OFFSET
1,2
COMMENTS
This sequence contains, in addition to the information contained in A286364 (which packs the values of A286361(n) and A286363(n) to a single value with the pairing function A000027), also the highest power of 2 dividing n. Note that this is more information than A286365, as it stores only the parity of the exponent of 2.
For all i, j: a(i) = a(j) => A286161(i) = A286161(j).
LINKS
Eric Weisstein's World of Mathematics, Pairing Function
FORMULA
a(n) = (1/2)*(2 + ((A001511(n)+A286364(n))^2) - A001511(n) - 3*A286364(n)).
PROG
(Scheme) (define (A286367 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A286364 n)) 2) (- (A001511 n)) (- (* 3 (A286364 n))) 2)))
(Python)
from sympy import factorint
from operator import mul
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def A(n, k):
f = factorint(n)
return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f])
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def a286364(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3)))
def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
def a(n): return T(a001511(n), a286364(n)) # Indranil Ghosh, May 09 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 08 2017
STATUS
approved