login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form p^10 + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime.
4

%I #8 May 12 2017 10:25:17

%S 12207031,2141993519227,178250690949465223,2346320474383711003267,

%T 398341412240537151131351,79545183674814239059370551,

%U 494424256962371823779424877,8271964541879648991904246901,32142180034067960734115528951,91264002187709396686868598317

%N Primes of the form p^10 + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime.

%e Prime number 12207031 = Sum_{i=0..10} 5^i is the first in the sequence since 23 divides 88573 = Sum_{i=0..10} 3^i as well as 2047 = Sum_{i=0..10} 2^i.

%t a286301[n_] := Select[Map[(Prime[#]^11-1)/(Prime[#]-1)&, Range[n]], PrimeQ]

%t a286301[150] (* data *)

%Y Subsequence of A060885, A162861 and A193574.

%Y Cf. A162862, A198244, A240693.

%K nonn

%O 1,1

%A _Hartmut F. W. Hoft_, May 05 2017