%I #11 Dec 12 2023 13:43:36
%S 32,484256,289919598688,8368036149759509152,
%T 9542829935669464786892890208,237478537202498785375436854135610527328,
%U 5320823767933620492346565093167366807147013946077792,577349384176263735966013123947670534373854750755384636719202336
%N Numerator of Sum_{i=1..n}(A285388(i)*A285389(i+1))/(A285388(i+1)*A285389(i)).
%C Conjecture: floor(a(n)/A286178(n)) = n.
%t a388[i_] := Numerator[2^(1 - 2 i^2) i Binomial[2 i^2, i^2]]; a389[i_] := Denominator[2^(1 - 2 i^2) i Binomial[2 i^2, i^2]]; Numerator[Table[Sum[(a388[i]/a389[i])/((a388[i + 1]/a389[i + 1])), {i, 1, n}], {n, 1, 10}]]
%Y Cf. A285388, A285389, A286178 (denominators).
%K nonn,frac
%O 1,1
%A _Ralf Steiner_, May 04 2017