Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 07 2019 12:18:29
%S 1,2,5,4,16,13,7,12,67,25,11,46,106,191,41,16,23,31,80,436,61,22,92,
%T 211,379,596,862,85,29,38,277,59,781,302,1541,113,37,154,58,631,991,
%U 193,1954,2557,145,46,57,436,212,96,467,2416,822,4006,181,56,232,529,947,1486,2146,2927,3829,4852,5996,221,67,80,94,109,1771,142,3487,355,706,1832,8647
%N Lower triangular region of square array A286101.
%H Antti Karttunen, <a href="/A286146/b286146.txt">Table of n, a(n) for n = 1..10585; the first 145 rows of triangle</a>
%F As a triangle (with n >= 1, 1 <= k <= n):
%F T(n,k) = (1/2)*(2 + ((gcd(n,k)+lcm(n,k))^2) - gcd(n,k) - 3*lcm(n,k)).
%e The first twelve rows of the triangle:
%e 1,
%e 2, 5,
%e 4, 16, 13,
%e 7, 12, 67, 25,
%e 11, 46, 106, 191, 41,
%e 16, 23, 31, 80, 436, 61,
%e 22, 92, 211, 379, 596, 862, 85,
%e 29, 38, 277, 59, 781, 302, 1541, 113,
%e 37, 154, 58, 631, 991, 193, 1954, 2557, 145,
%e 46, 57, 436, 212, 96, 467, 2416, 822, 4006, 181,
%e 56, 232, 529, 947, 1486, 2146, 2927, 3829, 4852, 5996, 221,
%e 67, 80, 94, 109, 1771, 142, 3487, 355, 706, 1832, 8647, 265
%e ----------------------------------------------------------------
%e For T(4,3) we have gcd(4,3) = 1 and lcm(4,3) = 12, thus T(4,3) = (1/2)*(2 + (12+1)^2 - 1 - 3*12) = 67.
%e For T(6,4) we have gcd(6,4) = 2 and lcm(6,4) = 12, thus T(6,4) = (1/2)*(2 + (12+2)^2 - 2 - 3*12) = 80.
%e For T(12,1) we have gcd(12,1) = 1 and lcm(12,1) = 12, thus T(12,1) = T(4,3) = 67.
%e For T(12,2) we have gcd(12,2) = 2 and lcm(12,1) = 12, thus T(12,1) = T(6,4) = 80.
%e For T(12,8) we have gcd(12,8) = 4 and lcm(12,8) = 24, thus T(12,8) = (1/2)*(2 + (24+4)^2 - 4 - 3*24) = 355.
%o (Scheme) (define (A286146 n) (A286101bi (A002024 n) (A002260 n))) ;; For A286101bi see A286101.
%o (Python)
%o from sympy import lcm, gcd
%o def t(n, k): return (2 + ((gcd(n, k) + lcm(n, k))**2) - gcd(n, k) - 3*lcm(n, k))/2
%o for n in range(1, 21): print [t(n, k) for k in range(1, n + 1)] # _Indranil Ghosh_, May 11 2017
%Y Cf. A286101.
%Y Cf. A286148 (same triangle reversed).
%Y Cf. A000124 (the left edge), A001844 (the right edge).
%K nonn,tabl
%O 1,2
%A _Antti Karttunen_, May 06 2017