login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285984
Numbers k such that 27*T(k)+1 is a square, where T(m) is the m-th triangular number A000217(m).
4
0, 110, 374, 107184, 363264, 103968854, 352366190, 100849681680, 341794841520, 97824087261230, 331540643908694, 94889263793711904, 321594082796592144, 92042488055813286134, 311945928772050471470, 89281118524875093838560, 302587229314806160734240, 86602592926640785210117550
OFFSET
0,2
COMMENTS
Numbers a(n) that make sqrt(27*T(a(n))+1) an integer.
This sequence a(n) gives also the indices of the triangular numbers T(a(n)) such that the 3rd degree Diophantine Bachet-Mordell equation y^2 = x^3+K holds with x = 3*T(a(n)) = A286035(n), y = T(a(n))* sqrt(27*T(a(n))+1) = A286036(n) and K = T(a(n))^2 = A286037(n).
REFERENCES
V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
LINKS
M.A. Bennett and A. Ghadermarzi, Data on Mordell's curve.
Michael A. Bennett and Amir Ghadermarzi, Mordell's equation : a classical approach, arXiv:1311.7077 [math.NT], 2013.
Eric Weisstein's World of Mathematics, Mordell Curve
FORMULA
a(n) = 264*sqrt(27*T(a(n-2))+1)+ a(n-4) = 264*sqrt(27*(a(n-2)*(a(n-2)+1)/2)+1)+ a(n-4), with a(-2)=110, a(-1)=0, a(0)=0, a(1)=110.
Empirical g.f.: 22*x*(5 + 12*x + 5*x^2) / ((1 - x)*(1 - 970*x^2 + x^4)). - Colin Barker, May 01 2017, verified by Robert Israel, May 03 2017
a(n) = 485*a(n-2)+242+66*sqrt(54*a(n-2)^2+54*a(n-2)+4). - Robert Israel, May 03 2017
EXAMPLE
k = 110 is a term because 27*(T(110) + 1) = 27 * (110*111/2 + 1) is a square. - David A. Corneth, May 02 2017
For n = 2, a(2) = 264*sqrt(27*(a(0)*(a(0)+1)/2)+1)+ a(-2) = 264*sqrt(27*(0*(0+1)/2)+1) + 110 = 374.
For n = 6, a(6) = 264*sqrt(27*(a(4)*(a(4)+1)/2)+1)+ a(2) = 264*sqrt(27*(363264*(363264+1)/2)+1) + 374 = 352366190.
MAPLE
restart: am2:=110: am1:=0: a0:=0: ap1:=110: print ('0, 0', '1, 110'); for n from 2 to 1000 do a:= 264*sqrt(27* (a0^2+a0)/2+1)+am2; print(n, a); am2:=am1; am1:=a0; a0:=ap1; ap1:=a; end do:
MATHEMATICA
nxt[{a_, b_}]:={b, 485*a+242+66*Sqrt[54a^2+54*a+4]}; NestList[nxt, {0, 110}, 20][[All, 1]] (* Harvey P. Dale, May 30 2018 *)
PROG
(PARI) is(n) = issquare(27*binomial(n+1, 2)+1) \\ David A. Corneth, May 02 2017
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, May 01 2017
STATUS
approved