login
A285793
Sum T(n,k) of the k-th entries in all cycles of all permutations of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
7
1, 4, 2, 18, 13, 5, 96, 83, 43, 18, 600, 582, 342, 192, 84, 4320, 4554, 2874, 1824, 1068, 480, 35280, 39672, 26232, 17832, 11784, 7080, 3240, 322560, 382248, 261288, 185688, 131256, 88920, 54360, 25200, 3265920, 4044240, 2834640, 2078640, 1534320, 1110960, 765360, 473760, 221760
OFFSET
1,2
COMMENTS
Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
FORMULA
T(n,1) = n * n!.
T(n,n) = floor((n-1)!*(n+2)/2).
EXAMPLE
T(3,2) = 13 because the sum of the second entries in all cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 2+3+2+3+3+0 = 13.
Triangle T(n,k) begins:
: 1;
: 4, 2;
: 18, 13, 5;
: 96, 83, 43, 18;
: 600, 582, 342, 192, 84;
: 4320, 4554, 2874, 1824, 1068, 480;
: 35280, 39672, 26232, 17832, 11784, 7080, 3240;
: 322560, 382248, 261288, 185688, 131256, 88920, 54360, 25200;
CROSSREFS
Columns k=1-2 give: A001563, A285795.
Main diagonal and first lower diagonal give: A038720(n-1) (for n>1), A286175.
Row sums give A000142 * A000217 = A180119.
Sequence in context: A074676 A257505 A152883 * A117692 A052966 A305135
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 26 2017
STATUS
approved