login
A285741
a(0) = 1; a(2*n) = a(n), a(2*n+1) = a(n) + R(a(n)), where R() is the digit reversal.
0
1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 77, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 77, 4, 8, 8, 16, 8, 16, 16, 77, 8, 16, 16, 77, 16, 77, 77, 154, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 77, 4, 8, 8, 16, 8, 16, 16, 77, 8, 16, 16
OFFSET
0,2
EXAMPLE
a(0) = 1;
a(1) = a(2*0+1) = a(0) + R(a(0)) = 1 + 1 = 2;
a(2) = a(2*1) = a(1) = 2;
a(3) = a(2*1+1) = a(1) + R(a(1)) = 2 + 2 = 4;
a(4) = a(2*2) = a(2) = 2;
a(5) = a(2*2+1) = a(2) + R(a(2)) = 2 + 2 = 4, etc.
MATHEMATICA
a[0] = 0; a[n_] := If[EvenQ[n], a[n/2], a[(n - 1)/2] + FromDigits[Reverse[IntegerDigits[a[(n - 1)/2]]]] ]; Table[a[n], {n, 0, 90}]
CROSSREFS
Cf. A001127 (records), A004086, A056964.
Sequence in context: A054536 A293664 A001316 * A364567 A161831 A096865
KEYWORD
nonn,base
AUTHOR
Ilya Gutkovskiy, Apr 25 2017
STATUS
approved