login
A285543
Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 35", based on the 5-celled von Neumann neighborhood.
4
1, 3, 6, 15, 28, 63, 120, 255, 496, 1023, 2016, 4095, 8128, 16383, 32640, 65535, 130816, 262143, 523776, 1048575, 2096128, 4194303, 8386560, 16777215, 33550336, 67108863, 134209536, 268435455, 536854528, 1073741823, 2147450880, 4294967295, 8589869056
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Apr 21 2017: (Start)
G.f.: (1 + x - 3*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = (-1 + (-1)^n + 2^(2+n) - 2^(n/2)*(1+(-1)^n)) / 2.
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3) - 2*a(n-4) + 4*a(n-5) for n>4.
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 35; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Apr 20 2017
STATUS
approved