OFFSET
0,3
COMMENTS
a(n) is for p=1, q=5. Generally for p,q in N, p>0, q>1:
Sum_{k>=0}(-p/q)^k*sqrt(Pi)/(Gamma(1/2-k)*Gamma(1+k))=sqrt(q/(q-p)).
Sum_{k>=0}(-1)^k*(-p/q)^k*sqrt(Pi)/(Gamma(1/2-k)*Gamma(1+k))=sqrt(q/(q+p)).
Sum_{k>=0}(-1)^(k+1)*(-p/q)^k*sqrt(Pi)/(Gamma(1/2-k)*Gamma(1+k))=-sqrt(q/(q+p)).
a(n) is the numerator of binomial(2*n,n)/20^n. - Robert Israel, Apr 09 2017
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..1000
FORMULA
MATHEMATICA
Numerator[Table[(-1/5)^n*Sqrt[Pi]/(Gamma[1/2-n]*Gamma[1+n]), {n, 0, 30}]]
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ralf Steiner, Apr 08 2017
STATUS
approved