OFFSET
0,3
COMMENTS
Total number of parts in all partitions of all positive integers <= n.
Sum of largest parts of all partitions of all positive integers <= n.
From Omar E. Pol, Feb 16 2021: (Start)
Apart from initial zero this is as follows:
a(n) is also the total number of divisors of all terms in the n-th row of triangle A340581. These divisors are also all parts of all partitions of all positive integers <= n. (End)
LINKS
FORMULA
G.f.: Sum_{i>=1} i*x^i/(1 - x) * Product_{j=1..i} 1/(1 - x^j).
G.f.: (1/(1 - x)) * Sum_{i>=1} x^i/(1 - x^i) * Product_{j>=1} 1/(1 - x^j).
a(n) = Sum_{k=0..n} A006128(k).
a(n) = A124920(n+1) - 1.
a(n) = Sum_{k=1..n} k * A299779(n,k). - Alois P. Heinz, May 14 2018
EXAMPLE
a(4) = 22 because we have 1 = 1, 2 = 2, 1 + 1 = 2, 3 = 3, 2 + 1 = 3, 1 + 1 + 1 = 3, 4 = 4, 3 + 1 = 4, 2 + 2 = 4, 2 + 1 + 1 = 4 and 1 + 1 + 1 + 1 = 4 therefore 1 + 1 + 2 + 1 + 2 + 3 + 1 + 2 + 2 + 3 + 4 = 22 (total number of parts) or 1 + 2 + 1 + 3 + 2 + 1 + 4 + 3 + 2 + 2 + 1 = 22 (sum of largest parts).
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
b(n, i-1) +(p-> p+[0, p[1]])(b(n-i, min(n-i, i))))
end:
a:= proc(n) a(n):= `if`(n<1, 0, a(n-1)+b(n$2)[2]) end:
seq(a(n), n=0..45); # Alois P. Heinz, Feb 16 2021
MATHEMATICA
nmax = 45; CoefficientList[Series[Sum[i x^i /(1 - x) Product[1/(1 - x^j), {j, 1, i}], {i, 1, nmax}], {x, 0, nmax}], x]
nmax = 45; CoefficientList[Series[1/(1 - x) Sum[x^i /(1 - x^i), {i, 1, nmax}] Product[1/(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]
Accumulate[Table[Sum[DivisorSigma[0, k] PartitionsP[n - k], {k, 1, n}], {n, 0, 45}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 04 2017
STATUS
approved