login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284467
Expansion of Product_{k>=1} (1 + x^(2*k-1))^(2*k-1)/(1 + x^(2*k))^(2*k).
4
1, 1, -2, 1, 2, -2, 0, -5, 10, 1, -15, 10, -1, 18, -39, 4, 50, -24, -14, -69, 165, -70, -83, -20, 154, 161, -550, 313, 55, 410, -960, 102, 1074, -406, -506, -1344, 3581, -1791, -833, -1833, 4995, 205, -6993, 2982, 2461, 7649, -19791, 9495, 4986, 9581, -26745, 0
OFFSET
0,3
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 + x^k)^2)). - Ilya Gutkovskiy, Jun 20 2018
MAPLE
N:= 100: # to get a(0)..a(N)
P:= mul((1+x^(2*k-1))^(2*k-1)/(1+x^(2*k))^(2*k), k=1..N/2):
S:= series(P, x, N+1):
seq(coeff(S, x, j), j=0..N); # Robert Israel, Apr 16 2017
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1))^(2*k-1)/(1 + x^(2*k))^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 15 2017 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 15 2017
STATUS
approved