login
A284444
a(n) = Sum_{d|n, d == 3 (mod 7)} d.
10
0, 0, 3, 0, 0, 3, 0, 0, 3, 10, 0, 3, 0, 0, 3, 0, 17, 3, 0, 10, 3, 0, 0, 27, 0, 0, 3, 0, 0, 13, 31, 0, 3, 17, 0, 3, 0, 38, 3, 10, 0, 3, 0, 0, 48, 0, 0, 27, 0, 10, 20, 52, 0, 3, 0, 0, 3, 0, 59, 13, 0, 31, 3, 0, 0, 69, 0, 17, 3, 10, 0, 27, 73, 0, 3, 38, 0, 3, 0, 90, 3
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>=0} (7*k + 3)*x^(7*k+3)/(1 - x^(7*k+3)). - Ilya Gutkovskiy, Mar 28 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023
MATHEMATICA
Table[Sum[If[Mod[d, 7] == 3, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 27 2017 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*((d % 7) == 3)); \\ Amiram Eldar, Nov 26 2023
CROSSREFS
Cf. A109705.
Cf. Sum_{d|n, d == k (mod 7)} d: A284099 (k=1), A284443 (k=2), this sequence (k=3), A284445 (k=4), A284446 (k=5), A284105 (k=6).
Sequence in context: A021337 A361824 A293903 * A341794 A033685 A272974
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 27 2017
STATUS
approved