login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284281
a(n) = Sum_{d|n, d == 3 (mod 5)} d.
12
0, 0, 3, 0, 0, 3, 0, 8, 3, 0, 0, 3, 13, 0, 3, 8, 0, 21, 0, 0, 3, 0, 23, 11, 0, 13, 3, 28, 0, 3, 0, 8, 36, 0, 0, 21, 0, 38, 16, 8, 0, 3, 43, 0, 3, 23, 0, 59, 0, 0, 3, 13, 53, 21, 0, 36, 3, 58, 0, 3, 0, 0, 66, 8, 13, 36, 0, 68, 26, 0, 0, 29, 73, 0, 3, 38, 0, 94, 0, 8
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>=0} (5*k + 3)*x^(5*k+3)/(1 - x^(5*k+3)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023
MATHEMATICA
Table[Sum[If[Mod[d, 5] == 3, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 24 2017 *)
PROG
(PARI) for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 5)==3, d, 0)), ", ")) \\ Indranil Ghosh, Mar 24 2017
(Python)
from sympy import divisors
def a(n): return sum([d for d in divisors(n) if d%5==3]) # Indranil Ghosh, Mar 24 2017
CROSSREFS
Cf. Sum_{d|n, d=k mod 5} d: A284097 (k=1), A284280 (k=2), this sequence (k=3), A284103 (k=4).
Sequence in context: A272974 A063691 A359967 * A075874 A181634 A230652
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 24 2017
STATUS
approved