login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283934
Numerators of poly-Bernoulli numbers B_n^(k) with k = 9.
2
1, 1, -18659, 1437155, -3443781552263, 299038554059, -4578818318657408083, -13134546687973878593, 1056237841304782111497583, -4359513902194586454589, -88697240413616501738435495501197, 635822194381744885857116976721
OFFSET
0,3
LINKS
EXAMPLE
B_0^(9) = 1, B_1^(9) = 1/512, B_2^(9) = -18659/10077696, B_3^(9) = 1437155/859963392, ...
MATHEMATICA
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-9), {m, 0, n}]; Table[Numerator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-9));
for(n=0, 15, print1(numerator(B(n)), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283935.
Sequence in context: A248488 A237700 A248065 * A266061 A267028 A226150
KEYWORD
sign,frac
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved