OFFSET
0,14
COMMENTS
Conjecture: a(n) > 0 for all n > 30.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
Ilya Gutkovskiy, Extended graphical example
Eric Weisstein's World of Mathematics, Semiprime
Eric Weisstein's World of Mathematics, Squarefree
Eric Weisstein's World of Mathematics, Twin Primes
EXAMPLE
a(17) = 3 because we have [14, 3], [11, 6] and [10, 7].
MAPLE
N:= 200: # to get a(0) to a(N)
V:= Vector(N):
Primes:= select(isprime, [2, seq(i, i=3..N+2)]):
PS:= convert(Primes, set);
Twins:= PS intersect map(`-`, PS, 2):
Twins:= Twins union map(`+`, Twins, 2):
Twins:= sort(convert(Twins, list)):
for i from 1 to nops(Twins) do
for j from 1 to nops(Primes) while Twins[i]+2*Primes[j] <= N do
for k from 1 to j-1 do
v:= Twins[i]+Primes[k]*Primes[j];
if v > N then break fi;
V[v]:= V[v]+1;
od od od:
0, seq(V[i], i=1..N); # Robert Israel, Mar 29 2017
MATHEMATICA
nmax = 110; CoefficientList[Series[Sum[Boole[PrimeQ[k] && (PrimeQ[k - 2] || PrimeQ[k + 2])] x^k, {k, 1, nmax}] Sum[MoebiusMu[k]^2 Floor[2/PrimeOmega[k]] Floor[PrimeOmega[k]/2] x^k, {k, 2, nmax}], {x, 0, nmax}], x]
PROG
(PARI) concat([0, 0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=1, 110, (isprime(k) && (isprime(k - 2) || isprime(k + 2)))* x^k) * sum(k=2, 110, moebius(k)^2 * floor(2/bigomega(k)) * floor(bigomega(k)/2) * x^k) + O(x^111))) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 18 2017
STATUS
approved