login
Number of 4Xn 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
1

%I #4 Mar 15 2017 08:06:04

%S 0,36,1304,15228,185564,2258212,25260000,278215520,3023291712,

%T 32251956888,340430533518,3561745440716,36963685994638,

%U 381138870886696,3908244620747464,39880799122343264,405240128230119230

%N Number of 4Xn 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

%C Row 4 of A283726.

%H R. H. Hardin, <a href="/A283729/b283729.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 16*a(n-1) -36*a(n-2) -60*a(n-3) -2824*a(n-4) +6678*a(n-5) +26842*a(n-6) +118692*a(n-7) -419608*a(n-8) -1491346*a(n-9) +317571*a(n-10) +8792678*a(n-11) +14707123*a(n-12) -19320158*a(n-13) -68768256*a(n-14) -39266756*a(n-15) +109017454*a(n-16) +213826284*a(n-17) +7506917*a(n-18) -211952462*a(n-19) -255284484*a(n-20) -102114938*a(n-21) +272678092*a(n-22) +193703130*a(n-23) +51860112*a(n-24) +22331788*a(n-25) -191765939*a(n-26) -61918424*a(n-27) -9275857*a(n-28) -17862812*a(n-29) +101684959*a(n-30) +8797290*a(n-31) -23032735*a(n-32) +11615934*a(n-33) -14849452*a(n-34) -5258668*a(n-35) +4609246*a(n-36) +769830*a(n-37) +648759*a(n-38) -260876*a(n-39) -221306*a(n-40) +32660*a(n-41) -1881*a(n-42) +9408*a(n-43) -712*a(n-44) -320*a(n-45) -16*a(n-46)

%e Some solutions for n=4

%e ..1..0..0..1. .0..1..0..1. .1..0..0..1. .0..0..0..1. .0..0..1..0

%e ..0..0..1..1. .1..0..1..1. .1..0..1..0. .1..0..0..1. .0..0..1..1

%e ..0..0..0..1. .0..0..1..0. .0..0..1..1. .1..1..0..0. .1..0..1..0

%e ..1..0..0..1. .0..0..1..1. .0..0..1..0. .1..1..0..1. .0..1..0..0

%Y Cf. A283726.

%K nonn

%O 1,2

%A _R. H. Hardin_, Mar 15 2017