%I #4 Mar 06 2017 17:05:04
%S 0,19,532,8087,116624,1592250,20788531,264040297,3282238215,
%T 40118887549,483764807520,5768246109027,68131353675622,
%U 798246637065836,9287150583313283,107389081231009891,1235032262230121990
%N Number of nX4 0..1 arrays with no 1 equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly two elements.
%C Column 4 of A283386.
%H R. H. Hardin, <a href="/A283382/b283382.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A283382/a283382.txt">Empirical recurrence of order 57</a>
%F Empirical recurrence of order 57 (see link above)
%e Some solutions for n=4
%e ..0..0..1..1. .1..0..1..1. .0..0..1..0. .0..1..1..1. .1..1..0..1
%e ..0..1..0..1. .1..0..1..0. .1..1..1..1. .0..1..0..0. .0..0..0..1
%e ..1..0..1..1. .1..1..0..1. .0..1..0..0. .1..0..1..1. .1..1..1..0
%e ..1..0..0..1. .0..1..0..0. .0..0..0..0. .1..1..0..0. .0..1..0..1
%Y Cf. A283386.
%K nonn
%O 1,2
%A _R. H. Hardin_, Mar 06 2017