login
A283353
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 619", based on the 5-celled von Neumann neighborhood.
10
1, 2, 4, 14, 28, 62, 124, 254, 508, 1022, 2044, 4094, 8188, 16382, 32764, 65534, 131068, 262142, 524284, 1048574, 2097148, 4194302, 8388604, 16777214, 33554428, 67108862, 134217724, 268435454, 536870908, 1073741822, 2147483644, 4294967294, 8589934588
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 06 2017: (Start)
G.f.: (1 + 2*x)*(1 - 2*x + 3*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
a(n) = 2^(n + 1) - 4 for n>0 and even.
a(n) = 2^(n + 1) - 2 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>3.
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 619; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i , 1, stages - 1}]
CROSSREFS
Sequence in context: A115626 A116021 A288154 * A323656 A338740 A365544
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 05 2017
STATUS
approved