OFFSET
1,5
COMMENTS
a(n) is the number of distinct terms in the first half of the n-th row of the A048158 triangle. - Michel Marcus, Mar 04 2017
a(n)/n appears to converge to a constant, approximately 0.2296. Can this be proved, and does the constant have a closed form? - Robert Israel, Mar 13 2017
The constant that a(n)/n approaches is Sum {p prime} 1/(p^2+p)* Product {q prime < p} (q-1)/q. - Michael R Peake, Mar 16 2017
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Michael R Peake, Explanation of limiting value of a(n)/n
EXAMPLE
a(7) = 2 because 7=0 (mod 1), 7=1 (mod 2), 7=1 (mod 3), two different results.
MAPLE
N:= 100: # to get a(1)..a(N)
V:= Vector(N, 1):
V[1]:= 0:
for m from 2 to N-1 do
k:= m/min(numtheory:-factorset(m));
ns:= [seq(n, n=m+1..min(N, m+k-1))];
V[ns]:= map(`+`, V[ns], 1);
od:
convert(V, list); # Robert Israel, Mar 13 2017
MATHEMATICA
Table[Length@ Union@ Map[Mod[n, #] &, Range@ Floor[n/2]], {n, 78}] (* Michael De Vlieger, Mar 03 2017 *)
PROG
(PARI) a(n) = #vecsort(vector(n\2, k, n % k), , 8); \\ Michel Marcus, Mar 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Kerscher, Mar 02 2017
STATUS
approved