login
A283159
a(1) = 5; for n > 1, a(n) = prime p >= a(n-1) such that both q = p + 2n and r = q + 2n + 2 are primes.
1
5, 7, 17, 23, 31, 41, 53, 67, 71, 89, 127, 149, 173, 199, 251, 251, 277, 347, 383, 409, 461, 479, 523, 593, 641, 691, 719, 773, 823, 887, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1619, 1709, 1741, 1823, 1907, 1951, 1979, 2087, 2143, 2243, 2243
OFFSET
1,1
MATHEMATICA
m = 0; p = 3; s = {}; Do[m = m + 2; While[! PrimeQ[p + m] || ! PrimeQ[p + 2*m + 2], p = NextPrime[p]]; AppendTo[s, p], {50}]; s
CROSSREFS
Cf. A283145.
Sequence in context: A370855 A044966 A359297 * A283145 A191145 A145354
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 01 2017
STATUS
approved