login
A282583
Number of compositions (ordered partitions) of n into quarter-squares (A002620).
1
1, 1, 2, 3, 6, 10, 19, 33, 60, 107, 193, 345, 621, 1113, 1999, 3586, 6439, 11554, 20741, 37223, 66814, 119916, 215237, 386310, 693375, 1244494, 2233686, 4009113, 7195757, 12915268, 23180946, 41606232, 74676840, 134033474, 240569601, 431785583, 774989076, 1390986741, 2496608365, 4481029864, 8042762869
OFFSET
0,3
FORMULA
G.f.: 1/(1 - Sum_{k>=2} x^(floor(k^2/4))).
EXAMPLE
a(4) = 6 because we have [4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
MATHEMATICA
nmax = 40; CoefficientList[Series[1/(1 - Sum[x^Floor[k^2/4], {k, 2, nmax}]), {x, 0, nmax}], x]
PROG
(PARI) Vec(1/(1 - sum(k=2, 40, x^floor(k^2/4)) + O(x^41))) \\ Indranil Ghosh, Mar 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 19 2017
STATUS
approved