login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least common multiple of 3*n+1 and 3*n-1.
3

%I #11 Sep 05 2020 19:35:10

%S 1,4,35,40,143,112,323,220,575,364,899,544,1295,760,1763,1012,2303,

%T 1300,2915,1624,3599,1984,4355,2380,5183,2812,6083,3280,7055,3784,

%U 8099,4324,9215,4900,10403,5512,11663,6160,12995,6844,14399,7564,15875,8320,17423

%N Least common multiple of 3*n+1 and 3*n-1.

%H Colin Barker, <a href="/A282284/b282284.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1).

%F a(n) = 9*n^2-1 for n>0 and even.

%F a(n) = (9*n^2-1)/2 for n odd.

%F a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.

%F G.f.: (1+4*x+32*x^2+28*x^3+41*x^4+4*x^5-2*x^6) / ((1-x)^3*(1+x)^3).

%t Table[LCM@@{3n+1,3n-1},{n,0,50}] (* or *) LinearRecurrence[{0,3,0,-3,0,1},{1,4,35,40,143,112,323},60] (* _Harvey P. Dale_, Sep 05 2020 *)

%o (PARI) vector(60, n, n--; lcm(3*n+1, 3*n-1))

%o (PARI) Vec((1+4*x+32*x^2+28*x^3+41*x^4+4*x^5-2*x^6) / ((1-x)^3*(1+x)^3) + O(x^60))

%Y Cf. A000466, A136017, A141759, A282285, A282286.

%K nonn,easy

%O 0,2

%A _Colin Barker_, Feb 11 2017