login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281814
Expansion of f(x, x^8) in powers of x where f(, ) is Ramanujan's general theta function.
5
1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
f(x,x^m) = 1 + Sum_{k>=1} x^((m+1)*k*(k-1)/2) (x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
Euler transform of period 18 sequence [1, -1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, -1, 1, -1, ...].
Characteristic function of generalized 11-gonal numbers A195160.
G.f.: Sum_{k in Z} x^(k*(9*k + 7)/2).
G.f.: Product_{k>0} (1 + x^(9*k-8)) * (1 + x^(9*k-1)) * (1 - x^(9*k)).
Sum_{k=1..n} a(k) ~ (2*sqrt(2)/3) * sqrt(n). - Amiram Eldar, Jan 13 2024
EXAMPLE
G.f. = 1 + x + x^8 + x^11 + x^25 + x^30 + x^51 + x^58 + x^86 + x^95 + ...
G.f. = q^49 + q^121 + q^625 + q^841 + q^1849 + q^2209 + q^3721 + q^4225 + ...
MATHEMATICA
a[ n_] := SquaresR[ 1, 72 n + 49] / 2;
a[ n_] := If[ n < 0, 0, Boole @ IntegerQ @ Sqrt @ (72 n + 49)];
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^9] QPochhammer[ -x^8, x^9] QPochhammer[ x^9], {x, 0, n}];
PROG
(PARI) {a(n) = issquare(72*n + 49)};
CROSSREFS
Sequence in context: A359773 A359774 A204220 * A353566 A279484 A279329
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 30 2017
STATUS
approved